Search results for "Dirichlet-to-Neumann map"
showing 4 items of 4 documents
Recovery of time-dependent coefficients from boundary data for hyperbolic equations
2019
We study uniqueness of the recovery of a time-dependent magnetic vector-valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet to Neumann map of a hyperbolic equation. The Cauchy data is observed on time-like parts of the space-time boundary and uniqueness is proved up to the natural gauge for the problem. The proof is based on Gaussian beams and inversion of the light ray transform on Lorentzian manifolds under the assumptions that the Lorentzian manifold is a product of a Riemannian manifold with a time interval and that the geodesic ray transform is invertible on the Riemannian manifold.
Applications of Microlocal Analysis in Inverse Problems
2020
This note reviews certain classical applications of microlocal analysis in inverse problems. The text is based on lecture notes for a postgraduate level minicourse on applications of microlocal analysis in inverse problems, given in Helsinki and Shanghai in June 2019.
Reconstruction from boundary measurements for less regular conductivities
2012
In this paper, following Nachman's idea and Haberman and Tataru's idea, we reconstruct $C^1$ conductivity $\gamma$ or Lipchitz conductivity $\gamma$ with small enough value of $|\nabla log\gamma|$ in a Lipschitz domain $\Omega$ from the Dirichlet-to-Neumann map $\Lambda_{\gamma}$. In the appendix the authors and R. M. Brown recover the gradient of a $C^1$-conductivity at the boundary of a Lipschitz domain from the Dirichlet-to-Neumann map $\Lambda_{\gamma}$.
Inverse problems for $p$-Laplace type equations under monotonicity assumptions
2016
We consider inverse problems for $p$-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying $\sigma_1 \geq \sigma_2$ and having the same nonlinear Dirichlet-to-Neumann map must be identical. The proof is based on a monotonicity inequality and the unique continuation principle for $p$-Laplace type equations. In higher dimensions, where unique continuation is not known, we obtain a similar result for conductivities close to constant.